
Data Structures
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2022 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Generics

 Java Collections and Interfaces

© 2022 Arthur Hoskey. All
rights reserved.

Class to Store an Integer

What would a class look like that could hold
one piece of integer data?

© 2022 Arthur Hoskey. All
rights reserved.

Class to Store an Integer

class Data

{

 private Integer x;

 public Integer getX()

 {

 return x;

 }

 public void setX(Integer newx)

 {

 x = newx;

 }

}

© 2022 Arthur Hoskey. All
rights reserved.

Data Class

Stores one piece

of integer data.

(Integer is wrapper

class for int)

Class to Store an String

 We have a class that can hold one piece of
integer data.

 What if we wanted a class that could store
one piece of string data?

 Could we use the class we just wrote?

© 2022 Arthur Hoskey. All
rights reserved.

Class to Store an String

class Data

{

 private String x;

 public String getX()

 {

 return x;

 }

 public void setX(String newx)

 {

 x = newx;

 }

}

© 2022 Arthur Hoskey. All
rights reserved.

Data Class

Stores one piece

of string data.

Class to Store an Boolean

 If we wanted to create a class that could
hold boolean data, we would have to
rewrite the Data class, yet again.

 For example…

© 2022 Arthur Hoskey. All
rights reserved.

Class to Store an Boolean

class Data

{

 private Boolean x;

 public Boolean getX()

 {

 return x;

 }

 public void setX(Boolean newx)

 {

 x = newx;

 }

}

© 2022 Arthur Hoskey. All
rights reserved.

Data Class

Stores one piece

of boolean data.

Generics

 Rewriting the class every time we want to store a
different type of data in it is inefficient and error
prone.

 There is a better way to do this.

 Use generics instead.

© 2022 Arthur Hoskey. All
rights reserved.

Generics

 Generics allow you to write a class once
that can be used with different data
types.

 For example…

© 2022 Arthur Hoskey. All
rights reserved.

Class to Store Any Data Type

class Data<T>

{

 private T x;

 public T getX()

 {

 return x;

 }

 void setX(T newx)

 {

 x = newx;

 }

}

© 2022 Arthur Hoskey. All
rights reserved.

Data Class

This version uses

generics.

T will stand for a data type. T will

be replace with a type when we

declare an instance of Data.

Generics

public staic void main(String[] args)

{

 Data<Integer> d = new Data<Integer>();

 d.setX(10);

 System.out.println(d.getX());

 Data<String> d2 = new Data<String>();

 d2.setX("Yanks");

 System.out.println(d2.getX());

}

© 2022 Arthur Hoskey. All
rights reserved.

main

Uses the generic

version of Data.

Java Collections and Interfaces

 Now on to Java collections and
interfaces…

© 2022 Arthur Hoskey. All
rights reserved.

ArrayList

ArrayList

 Java list collection that uses an array-based
implementation.

 This collection stores its objects just like a
normal array.

 Put values in and get values out of the collection
using an index.

 ArrayList resizes itself.

© 2022 Arthur Hoskey. All
rights reserved.

ArrayList

 Java collection that is a wrapper around an array.

ArrayList<String> a = new ArrayList<String>();

a.add("Rose");

a.add("Mateo");

a.add("Jane");

for (String s: a)

{

 System.out.println(s);

}

© 2022 Arthur Hoskey. All
rights reserved.

Create an instance

of an ArrayList

Add data to

the ArrayList

Print all the

data in the

ArrayList

Store strings in

the ArrayList

LinkedList

LinkedList

 Java list collection that uses a doubly-linked
implementation.

 It implements both the List and Deque interfaces.

LinkedList<String> list = new LinkedList<String>();

list.add("Rose");

list.add("Mateo");

list.add("Jane");

for (String s: list)

{

 System.out.println(s);

}

© 2022 Arthur Hoskey. All
rights reserved.

interface Collection<E>

interface Collection<E>

 Base interface for some other collection interfaces (not all).

 E stands for the data type of the items in the collection.

 Contains methods for the following categories of
operations:
◦ Adding

◦ Clearing

◦ Contains

◦ Removing

◦ Iterator

 Classes that implement this interface should have two
constructors:
◦ Default constructor

◦ Constructor that takes a Collection as a parameter.

© 2022 Arthur Hoskey. All
rights reserved.

interface List<E>

interface List<E>

 Inherits from Collection interface.

 An ordered collection.

 Can contain duplicates.

 Can manipulate elements in the list according to their
indices.

 Implemented by the following classes:

 ArrayList, LinkedList, Vector

Note: ArrayList and Vector are basically both resizable
arrays. They differ with respect to thread synchronization
and a few other things.

© 2022 Arthur Hoskey. All
rights reserved.

Create a List

Create a List

 Create an empty list using ArrayList (ArrayList implements the List
interface):

List<String> myList = new ArrayList<>();

or

List<String> myList = new ArrayList<String>();

 Create a list from data using Arrays.asList (you can pass as many
parameters as you want):

List<String> myList = Arrays.asList("a", "b", "c");

 Create a list from an existing array:

String[] myArray = {"a", "b", "c"};

List<String> myList = Arrays.asList(myArray);

Note: Arrays is a prewritten class in the JDK that contains static helper
methods for dealing with arrays.

© 2022 Arthur Hoskey. All
rights reserved.

Instance type is inferred

from the variable data type

List Example

 List example. ArrayList implements the List
interface.

List<String> langList;

langList = new ArrayList<String>();

langList.add("Java");

langList.add("C++");

langList.add("Python");

for (String s : langList) {

 System.out.println(s);

}

Declare interface reference

Create instance of ArrayList

Use List interface reference to

add items to the collection

© 2022 Arthur Hoskey. All
rights reserved.

Cannot Use Primitive Types in a
Collection

 Can only use reference types as the data type in
a collection.

List<int> myList = new ArrayList<>();

// Use the wrapper type instead of a primitive type

List<Integer> myList = new ArrayList<>();

myList.add(10);

CANNOT use a primitive type as the data type.

You will see a compile error similar to the following:

"Unexpected type, required reference, found int".

© 2022 Arthur Hoskey. All
rights reserved.

Will auto box the int data

List Interface and Custom
Collections

 You can write your own List collection.

 If you write a new class that contains a collection
of some sort you could have your class
implement the Java List interface.

© 2022 Arthur Hoskey. All
rights reserved.

General Description of Iterators

 Iterators – In general, objects which allow a
program to traverse through a collection.

 Internals of a collection may be hidden (private)
so there needs to be a way to access them all.

 Iterators are used to "visit" each element of a
collection.

© 2022 Arthur Hoskey. All
rights reserved.

General Description of Iterators

 Here is a collection with data (could be an array):

 If we want to print all items in this collection, we would not
be able to in this case.

Collection

20 40 30 70

User of the collection

may not have direct

access to the items it

contains

© 2022 Arthur Hoskey. All
rights reserved.

General Description of Iterators

 Iterators are helper classes that have access to the items
of the collection.

 An iterator "points at" one item of the class.

 In general, you can do the following with an iterator:
◦ Get data from the current item.

◦ Go to the next item in the collection.

◦ Some iterators allow you to traverse the collection in reverse.

◦ Some iterators allow you to remove items from the collection.

 For example…

© 2022 Arthur Hoskey. All
rights reserved.

General Description of Iterators

This iterator points at the first item of

the collection.

You can get the data (20) at that item

if you want but not any other item's

data.

Collection

20 40 30 70

Iterator

If we told the iterator to go to the next item then it would look like the

following….

Iterator now points at the second

item.

You can get the data in the second

item (40) but not the other items.

Collection

20 40 30 70

Iterator

© 2022 Arthur Hoskey. All
rights reserved.

interface Iterator<E>

interface Iterator<E>

 The Iterator interface allows you to traverse a
collection from beginning to the end (not in
reverse).

 Some methods:
◦ next – Returns the data at the current item and moves

the iterator to the next item.

◦ hasNext – Returns true if there is another item in the
collection after the current item and false otherwise.

© 2022 Arthur Hoskey. All
rights reserved.

interface Iterator<E>

interface Iterator<E>

 The Iterator interface allows you to traverse a
collection from beginning to the end (not in
reverse).

// Code to create langList here…

Iterator<String> iter;

iter = langList.iterator();

while (iter.hasNext()) {

 String current = iter.next();

 System.out.println(current);

}

Declare iterator reference

Get an iterator from a collection

(assumes langList was created

and populated with data)

Keep going while there is another item

Returns the current item

and moves the iterator to

the next item

© 2022 Arthur Hoskey. All
rights reserved.

interface ListIterator<E>

interface ListIterator<E>

 Iterator used specifically for a list.

 Derived from the Iterator<E> interface.

 Allows for:
◦ Traversing the list in reverse.

◦ Adding new items into the list at the iterator's current
location.

◦ Some other functionality as well.

© 2022 Arthur Hoskey. All
rights reserved.

Collections Class

Collections Class

 The Collections class is different than the
Collection interface discussed earlier.

 Contains methods that can be used to manipulate and
query a given collection.

 Only contains static methods.

 Here are a few of the methods on the Collections
class…

© 2022 Arthur Hoskey. All
rights reserved.

Collections Class Methods

Collections Class Methods

 sort – Sorts the elements of a list.

 binarySearch – Locates an object in a list.

 reverse – Reverses the elements of a list.

 shuffle – Randomly orders a List’s elements.

 min – Returns the smallest element in a
Collection.

 max – Returns the largest element in a
Collection.

 For an exhaustive list of methods go to:

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/Collections.html

© 2022 Arthur Hoskey. All
rights reserved.

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/Collections.html

sort

Collections Class Method (example for sort)

 The sort method puts the items in sorted order.

System.out.println("Original order");

for (String s : langList) {

 System.out.println(s);

}

// Sort the list

Collections.sort(langList);

System.out.println("Sorted order");

for (String s : langList) {

 System.out.println(s);

}

Call the sort method on

collections (it is a static method

so we call directly on the class)

Note: To sort a collection of a user-

defined class that class must

implement the Comparable interface.

© 2022 Arthur Hoskey. All
rights reserved.

End of Slides

 End of Slides

© 2022 Arthur Hoskey. All
rights reserved.

	Slide 1: Data Structures
	Slide 2: Today’s Lecture
	Slide 3: Class to Store an Integer
	Slide 4: Class to Store an Integer
	Slide 5: Class to Store an String
	Slide 6: Class to Store an String
	Slide 7: Class to Store an Boolean
	Slide 8: Class to Store an Boolean
	Slide 9: Generics
	Slide 10: Generics
	Slide 11: Class to Store Any Data Type
	Slide 12: Generics
	Slide 13: Java Collections and Interfaces
	Slide 14: ArrayList
	Slide 15: ArrayList
	Slide 16: LinkedList
	Slide 17: interface Collection<E>
	Slide 18: interface List<E>
	Slide 19: Create a List
	Slide 20: List Example
	Slide 21: Cannot Use Primitive Types in a Collection
	Slide 22: List Interface and Custom Collections
	Slide 23: General Description of Iterators
	Slide 24: General Description of Iterators
	Slide 25: General Description of Iterators
	Slide 26: General Description of Iterators
	Slide 27: interface Iterator<E>
	Slide 28: interface Iterator<E>
	Slide 29: interface ListIterator<E>
	Slide 30: Collections Class
	Slide 31: Collections Class Methods
	Slide 32: sort
	Slide 33: End of Slides

